Warm Up

Graph the function and its inverse without a graphing calculator.

$$y = 3^{x-1} + 2$$

Graph the function and its inverse without a graphing calculator.

SECTION 8.5:

Properties of Logarithms Most calculators only have two types of log keys:

1.) Common Logarithms

(base 1)

LOG

2.) Natural Logarithms

(base _e_)

To evaluate logarithms to other bases we need to use the

CHANGE-OF-BASE **FORUMLA**

logax can be converted to a different base as follows:

BASE b	BASE 10	BASE e
$\log_a x = \frac{\log_b x}{\log_b a}$	$\log_a x = \frac{\log x}{\log a}$	$\log_a x = \frac{\ln x}{\ln a}$

Changing Bases Using Common & Natural Logarithms

	Common Log	Natural Log
log ₄ 25	$\frac{100_{10}25}{100_{10}4}=2.3$	$2\frac{1025}{104} = 2.32$
log ₂ 12		58
log ₃ 16	2.	52
log ₅ 22	•	92

Property #1 - Product Property $log_a(cd) = log_ac + log_ad$

Expanding Examples:

$$log_5(125x)$$

$$log_5(125x)$$
 $ln(xyz)$ $log_5(125x)$ $log_5(125x)$ $log_5(125x)$ $log_5(125x)$ $log_5(125x)$

Property #1 - Product Property $log_a(cd) = log_ac + log_ad$

Condensing Examples:

$$\log_7 x + \log_7 11$$

10017 (11X)

lnr + ln5 + lns

Property #2 - $\log_a \frac{c}{d} = \log_a c - \log_a d$ Quotient Property

Expanding Examples:

$$log\left(\frac{xy}{zw}\right)$$

$$log(xy) - Log(zw)$$

$$(logx + logy) - (logz + logy)$$

$$logx + logy - logz - logw$$

Property #2 -Quotient Property

Condensing Examples:

$$\log_2 5 - \log_2 11$$

$$\log 12 - \log 5$$

$$iOG(\frac{12}{5})$$

Property #3 - Power Property

Examples:

$$15\log_3 a + 5\log_3 b$$

$$\log_3 a + \log_3 b$$

$$\log_3 a + \log_3 b$$

$$6\log_4 x - 12\log_4 y$$

$$8 \log x + 2 \log y$$

$$\log x + \log y$$

$$\log (x y)$$

$$2\log_9 w + \frac{\log_9 u}{2}$$

$$2\log_9 w + \frac{\log_9 u}{2}$$

$$2\log_9 w + \frac{\log_9 u}{2}$$

$$\log_9 w + \frac{\log_9 u}{2}$$

$$\log_9 w + \frac{\log_9 u}{2}$$

log₄5x³y

$$ln\!\!\left(\frac{\sqrt{3x-5}}{7}\right)$$

 $log(4x^3y5z^2)$

$$\log_2 5 - 3$$

$$\frac{\log_9 12}{2}$$

 $6\log_4 11 + 6\log_4 3 + 36\log_4 10$

$$log_3 =$$

$$log_{7}1 = _{_{_{_{_{_{1}}}}}}$$

$$\log 10^4 =$$

$$\ln e^2 =$$